This work develops new results for stochastic approximation algorithms. The emphases are on treating algorithms and limits with discontinuities. The main ingredients include the use of differential inclusions, set-valued analysis, and non-smooth analysis, and stochastic differential inclusions. Under broad conditions, it is shown that a suitably scaled sequence of the iterates has a differential inclusion limit. In addition, it is shown for the first time that a centered and scaled sequence of the iterates converges weakly to a stochastic differential inclusion limit. The results are then used to treat several application examples including Markov decision process, Lasso algorithms, Pegasos algorithms, support vector machine classification, and learning. Some numerical demonstrations are also provided.


翻译:这项工作为随机近似算法开发了新的结果。 重点是处理算法和不连续限制。 主要成份包括使用差异包容、定值分析和非移动分析以及随机差异分析。 在广泛条件下, 显示迭代的合适比例序列具有差异包容限制。 此外, 首次显示迭代的中、 缩放序列与随机差异包容限制不匹配。 其结果被用来处理若干应用实例, 包括Markov 决策程序、 Lasso 算法、 Pegasos 算法、 支持矢量机分类和学习。 还提供一些数字演示。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
VIP会员
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Top
微信扫码咨询专知VIP会员