This paper presents and analyzes a discontinuous Galerkin method for the compressible three-phase flow problem in porous media. We use a first order time extrapolation which allows us to solve the equations implicitly and sequentially. We show that the discrete problem is well-posed, and obtain a priori error estimates. Our numerical results validate the theoretical results, i.e. the algorithm converges with first order, under different setups that involve variable density and effects of gravity.
翻译:本文介绍并分析了一种不连续的 Galerkin 方法, 用于在多孔介质中压缩三相流程问题。 我们使用第一个顺序时间的外推法, 从而可以默认和连续地解答方程式。 我们显示离散问题已经得到了很好的定位, 并获得了先验误差估计。 我们的数字结果证实了理论结果, 即算法与第一顺序相融合, 由不同结构组成, 涉及可变密度和重力效应。