A new method is explored for analyzing the performance of coset codes over the binary erasure wiretap channel (BEWC) by decomposing the code over subspaces of the code space. This technique leads to an improved algorithm for calculating equivocation loss. It also provides a continuous-valued function for equivocation loss, permitting proofs of local optimality for certain finite-blocklength code constructions, including a code formed by excluding from the generator matrix all columns which lie within a particular subspace. Subspace decomposition is also used to explore the properties of an alternative secrecy code metric, the chi squared divergence. The chi squared divergence is shown to be far simpler to calculate than equivocation loss. Additionally, the codes which are shown to be locally optimal in terms of equivocation are also proved to be globally optimal in terms of chi squared divergence.
翻译:暂无翻译