The interaction topology is critical for efficient cooperation of mobile robotic networks (MRNs). We focus on the local topology inference problem of MRNs under formation control, where an inference robot with limited observation range can manoeuvre among the formation robots. This problem faces new challenges brought by the highly coupled influence of unobservable formation robots, inaccessible formation inputs, and unknown interaction range. The novel idea here is to advocate a range-shrink strategy to perfectly avoid the influence of unobservable robots while filtering the input. To that end, we develop consecutive algorithms to determine a feasible constant robot subset from the changing robot set within the observation range, and estimate the formation input and the interaction range. Then, an ordinary least squares based local topology estimator is designed with the previously inferred information. Resorting to the concentration measure, we prove the convergence rate and accuracy of the proposed estimator, taking the estimation errors of previous steps into account. Extensions on nonidentical observation slots and more complicated scenarios are also analyzed. Comprehensive simulation tests and method comparisons corroborate the theoretical findings.
翻译:互动表层对于移动机器人网络(MRNs)的高效合作至关重要。 我们侧重于受编组控制的MRNs的本地表层推断问题,在这个问题上,一个观测范围有限的推论机器人可以在编组机器人之间操纵。 这个问题面临着由不可观测的编组机器人、无法编组输入和未知互动范围高度结合的影响带来的新挑战。 这里的新想法是倡导一个范围缩小战略,以便在过滤输入时完全避免不可观察机器人的影响。 为此,我们开发连续算法,从观察范围内变化的机器人组中确定一个可行的恒定机器人子集,并估计编组输入和互动范围。 然后,一个普通的、基于最小方形的本地表层估计符与先前推断的信息一起设计。 恢复集中测量尺度,我们证明拟议的估测器的趋同率和准确性,同时考虑前几个步骤的估计错误。 关于非同式观测台站和更为复杂的假设情景的扩展也得到了分析。 全面模拟测试和方法比较证实了理论结论。