In [3] it was shown that four seemingly different algorithms for computing low-rank approximate solutions $X_j$ to the solution $X$ of large-scale continuous-time algebraic Riccati equations (CAREs) $0 = \mathcal{R}(X) := A^HX+XA+C^HC-XBB^HX $ generate the same sequence $X_j$ when used with the same parameters. The Hermitian low-rank approximations $X_j$ are of the form $X_j = Z_jY_jZ_j^H,$ where $Z_j$ is a matrix with only few columns and $Y_j$ is a small square Hermitian matrix. Each $X_j$ generates a low-rank Riccati residual $\mathcal{R}(X_j)$ such that the norm of the residual can be evaluated easily allowing for an efficient termination criterion. Here a new family of methods to generate such low-rank approximate solutions $X_j$ of CAREs is proposed. Each member of this family of algorithms proposed generates the same sequence of $X_j$ as the four previously known algorithms. The approach is based on a block rational Arnoldi decomposition and an associated block rational Krylov subspace spanned by $A^H$ and $C^H.$ Two specific versions of the general algorithm will be considered; one will turn out to be equivalent to the RADI algorithm, the other one allows for a slightly more efficient implementation compared to the RADI algorithm. Moreover, our approach allows for adding more than one shift at a time.


翻译:在文献[3]中,证明了四个表面上不同的算法用于计算大规模连续时间代数Riccati方程(CAREs) 的低秩近似解$X_j$,均在使用相同的参数时会生成相同的序列$X_j$。Hermitian低秩近似$X_j$的形式为$X_j=Z_jY_jZ_j^H$,其中$Z_j$是仅具有少数列的矩阵,而$Y_j$是小型的方阵。每个$X_j$生成一个低秩Riccati残差$\mathcal{R}(X_j)$,使得可以容易地计算残差的范数,从而实现高效的终止准则。本文提出了一种新的算法族来生成CAREs的这种低秩近似解$X_j$。当使用已知的四个算法和相同参数时,所产生的序列$X_j$和之前一样。该方法基于块有理Arnoldi分解和由$A^H$和$C^H$构成的相关块有理Krylov子空间。我们将考虑这个通用算法的两个具体版本:一个等价于RADI算法,另一个比RADI算法略微更高效。此外,我们的方法允许一次添加多个漂移参数。

0
下载
关闭预览

相关内容

【干货书】工程和科学中的概率和统计,
专知会员服务
57+阅读 · 2022年12月24日
【硬核书】矩阵代数基础,248页pdf
专知会员服务
81+阅读 · 2021年12月9日
专知会员服务
75+阅读 · 2021年3月16日
专知会员服务
41+阅读 · 2020年7月29日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月22日
Arxiv
0+阅读 · 2023年5月19日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员