In this paper, we propose a personalized seizure detection and classification framework that quickly adapts to a specific patient from limited seizure samples. We achieve this by combining two novel paradigms that have recently seen much success in a wide variety of real-world applications: graph neural networks (GNN), and meta-learning. We train a Meta-GNN based classifier that learns a global model from a set of training patients such that this global model can eventually be adapted to a new unseen patient using very limited samples. We apply our approach on the TUSZ-dataset, one of the largest and publicly available benchmark datasets for epilepsy. We show that our method outperforms the baselines by reaching 82.7% on accuracy and 82.08% on F1 score after only 20 iterations on new unseen patients.
翻译:在本文中,我们提出了一种个性化癫痫检测和分类框架,能够从有限的癫痫样本中快速适应特定患者。我们通过将两种最近在各种实际应用中取得了很大成功的新兴范例相结合来实现这一目标:图神经网络(GNN)和元学习。我们训练一个基于 Meta-GNN 的分类器,该分类器从一组训练患者中学习一个全局模型,以便最终可以使用极少量的样本来适应新的未见过的患者。我们在 TUSZ 数据集上应用了我们的方法,这是目前公开的最大的用于癫痫的基准数据集之一。我们展示了我们的方法在新的未见过的患者上仅仅经过 20 次迭代就能够达到 82.7% 的准确率和 82.08% 的 F1 分数,表现优于基准。