This paper considers the backward Euler based linear time filtering method for the EMAC formulation of the incompressible Navier-Stokes equations. The time filtering is added as a modular step to the standard backward Euler code leading to a 2-step, unconditionally stable, second order linear method. Despite its success in conserving important physical quantities when the divergence constraint is only weakly enforced, the EMAC formulation is unable to improve solutions of backward Euler discretized NSE. The combination of the time filtering with the backward Euler discretized EMAC formulation of NSE greatly increases numerical accuracy of solutions and still conserves energy, momentum and angular momentum as EMAC does. Several numerical experiments are provided that both verify the theoretical fidings and demonstrate superiority of the proposed method over the unfiltered case.
翻译:本文考虑了 EMAC 开发不可压缩的 Navier-Stokes 方程式时基于 Euler 的后向线性时间过滤法; 时间过滤法是作为模块步骤添加到标准的后向式 Euler 代码中,导致采用两步、无条件稳定的第二顺序线性方法; 尽管在差异限制执行不力的情况下成功地保存了重要的物理数量, 但 EMAC 的配方无法改进落后的 Euler 离散 NSE的解决方案; 与 NSE的后向式 Euler 离散式 EMAC 配方法相结合, 大大提高了解决方案的精确度, 并仍然像 EMAC 那样节省了能量、 动力和 角性动力。 提供了数项实验, 既可以验证理论的拼法,又可以证明拟议方法优于未过滤的情况。