We present a novel sequential Monte Carlo approach to online smoothing of additive functionals in a very general class of path-space models. Hitherto, the solutions proposed in the literature suffer from either long-term numerical instability due to particle-path degeneracy or, in the case that degeneracy is remedied by particle approximation of the so-called backward kernel, high computational demands. In order to balance optimally computational speed against numerical stability, we propose to furnish a (fast) naive particle smoother, propagating recursively a sample of particles and associated smoothing statistics, with an adaptive backward-sampling-based updating rule which allows the number of (costly) backward samples to be kept at a minimum. This yields a new, function-specific additive smoothing algorithm, AdaSmooth, which is computationally fast, numerically stable and easy to implement. The algorithm is provided with rigorous theoretical results guaranteeing its consistency, asymptotic normality and long-term stability as well as numerical results demonstrating empirically the clear superiority of AdaSmooth to existing algorithms.
翻译:我们提出了一种创新的、顺序顺序的蒙特卡洛方法,在非常一般的路径空间模型类别中在线平滑添加功能。迄今为止,文献中提出的解决方案要么由于粒子-偏向性退化而长期数字不稳定,要么由于所谓的后内核的粒子近似、高计算要求而补救变性。为了在最佳计算速度与数字稳定性之间取得平衡,我们提议提供一种(快的)天真粒子平滑剂,传播粒子样本和相关的平滑统计数据,并附带一种适应性后向抽样更新规则,使(成本的)后向样本的数量保持在最低水平。这产生了一种新的、具体功能的顺畅的添加算法,即AdaSmooth,该算法是快速、数字稳定和易于执行的。我们提供了严格的理论结果,保证其一致性、正常性和长期稳定性,以及从经验上证明AdaSmooth明显优于现有算法。