This paper considers the numerical treatment of the time-dependent Gross-Pitaevskii equation. In order to conserve the time invariants of the equation as accurately as possible, we propose a Crank-Nicolson-type time discretization that is combined with a suitable generalized finite element discretization in space. The space discretization is based on the technique of Localized Orthogonal Decompositions (LOD) and allows to capture the time invariants with an accuracy of order $\mathcal{O}(H^6)$ with respect to the chosen mesh size $H$. This accuracy is preserved due to the conservation properties of the time stepping method. Furthermore, we prove that the resulting scheme approximates the exact solution in the $L^{\infty}(L^2)$-norm with order $\mathcal{O}(\tau^2 + H^4)$, where $\tau$ denotes the step size. The computational efficiency of the method is demonstrated in numerical experiments for a benchmark problem with known exact solution.
翻译:本文考虑对基于时间的Gross- Pitaevskii方程式的数值处理。 为了尽可能准确地保存方程式的时间变异性, 我们提议使用Crank- Nicolson 型时间分解法, 与空间中适当的通用有限分解元素相结合。 空间分解法以本地化正弦分解法( LOD) 技术为基础, 并允许以 $\ mathcal{ O} (H) 6) 的精确度捕捉选定网格大小为$\ mathcal{O} (H) $( H) 6) 的变异性时间。 由于时间间隔法的保存特性, 此精确度得以保留 。 此外, 我们证明, 由此产生的方案接近于$\ infty} (L% 2)- nonm 的确切解决方案, 以 $\mathcal{O} (\ tau2+ H ⁇ 4) 来表示步骤大小的精度。 该方法的计算效率表现在已知精确解决方案的基准问题的数字实验中。