To mitigate the inspector's workload and improve the quality of the product, computer vision-based anomaly detection (AD) techniques are gradually deployed in real-world industrial scenarios. Recent anomaly analysis benchmarks progress to generative models. The aim is to model the defect-free distribution so that anomalies can be classified as out-of-distribution samples. Nevertheless, there are two disturbing factors that need researchers and deployers to prioritize: (i) the simplistic prior latent distribution inducing limited expressive capability; (ii) the collapsed mutual-dependent features resulting in poor generalization. In this paper, we propose a novel Patch-wise Wasserstein AutoEncoder (P-WAE) architecture to alleviate those challenges. In particular, a patch-wise variational inference model coupled with solving the jigsaw puzzle is designed, which is a simple yet effective way to increase the expressiveness and complexity of the latent manifold. This alleviates the blurry reconstruction problem. In addition, the Hilbert-Schmidt Independence Criterion (HSIC) bottleneck is introduced to constrain the over-regularization representation. Comprehensive experiments, conducted on the MVTec AD dataset, demonstrate the superior performance of our propo
翻译:为了减轻检查员的工作量,提高产品质量,在现实世界的工业情景中逐步采用基于计算机视像的异常探测技术(AD),在现实世界的工业情景中逐步采用基于计算机视像的异常探测技术。最近异常分析为基因模型的进展提供了基准基准。目的是模拟无缺陷分布模式,从而将异常现象分类为分配之外的样本。然而,有两个令人不安的因素需要研究人员和部署人员优先处理:(一) 简单的先前潜在分布导致的表达能力有限;(二) 相互依赖性特征的崩溃导致不全面化。在本文件中,我们提议建立一个新型的Ppatch-Wasserstein AutoEncoder(P-WAWAE)架构来缓解这些挑战。特别是设计一个补补的变异推模型,同时解决拼图问题,这是提高潜在电流的清晰度和复杂性的一个简单而有效的方法。这缓解了模糊的重建问题。此外,Hilbert-Schmidt 独立性(HSICTIRION)瓶子(HSIC)用于限制过度正规化的代表性。在MVTEADAD号上进行的全面实验,展示了我们方案数据的高级表现。