Machine learning models usually assume i.i.d data during training and testing, but data and tasks in real world often change over time. To emulate the transient nature of real world, we propose a challenging but practical task: text classification in-the-wild, which introduces different non-stationary training/testing stages. Decomposing a complex task into modular components can enable robust generalisation under such non-stationary environment. However, current modular approaches in NLP do not take advantage of recent advances in parameter efficient tuning of pretrained language models. To close this gap, we propose MODULARPROMPT, a label-modular prompt tuning framework for text classification tasks. In MODULARPROMPT, the input prompt consists of a sequence of soft label prompts, each encoding modular knowledge related to the corresponding class label. In two of most formidable settings, MODULARPROMPT outperforms relevant baselines by a large margin demonstrating strong generalisation ability. We also conduct comprehensive analysis to validate whether the learned prompts satisfy properties of a modular representation.
翻译:机械学习模式通常在培训和测试期间假定一.一.d数据,但现实世界的数据和任务往往随时间变化。为了效仿现实世界的短暂性质,我们建议一项具有挑战性但实际的任务:在瞬间对文本进行分类,引入不同的非静止培训/测试阶段。将复杂的任务分解成模块化组件组件可以在这种非静止环境中进行强力的概括化。然而,在非静止环境中,国家语言规划中目前的模块化方法并不利用在参数有效调整预先培训的语言模型方面的最新进展。为了缩小这一差距,我们建议采用MODULARPROPT, 即文本分类任务的标签模式快速调试框架。在MODULARPROPT 中,输入提示由软标签提示序列组成,每个编码模块知识都与相应的类标签相关。在两个最可怕的环境中,MODULALARPROPPT 以显示强的概括能力,将相关基线化为大边缘。我们还进行全面分析,以验证所学的提示是否满足模块代表的特性。