In this paper, a deep learning approach is proposed to accurately position wheeled vehicles in Global Navigation Satellite Systems (GNSS) deprived environments. In the absence of GNSS signals, information on the speed of the wheels of a vehicle (or other robots alike), recorded from the wheel encoder, can be used to provide continuous positioning information for the vehicle, through the integration of the vehicle's linear velocity to displacement. However, the displacement estimation from the wheel speed measurements are characterised by uncertainties, which could be manifested as wheel slips or/and changes to the tyre size or pressure, from wet and muddy road drives or tyres wearing out. As such, we exploit recent advances in deep learning to propose the Wheel Odometry neural Network (WhONet) to learn the uncertainties in the wheel speed measurements needed for correction and accurate positioning. The performance of the proposed WhONet is first evaluated on several challenging driving scenarios, such as on roundabouts, sharp cornering, hard-brake and wet roads (drifts). WhONet's performance is then further and extensively evaluated on longer-term GNSS outage scenarios of 30s, 60s, 120s and 180s duration, respectively over a total distance of 493 km. The experimental results obtained show that the proposed method is able to accurately position the vehicle with up to 93% reduction in the positioning error of its original counterpart after any 180s of travel. WhONet's implementation can be found at https://github.com/onyekpeu/WhONet.
翻译:本文中提出了一种深层次的学习方法,以精确定位在全球导航卫星系统(GNSS)缺损环境中的轮轮式车辆;在没有全球导航卫星系统信号的情况下,从轮式编码器记录到的车辆(或其他机器人)车轮速度的信息,可以通过整合车辆的线性速度到迁移,用于为车辆提供连续定位信息;然而,轮式速度测量的偏移估计具有不确定性,这可以表现为轮滑或/和轮胎大小或压力的变化,从湿湿湿和泥土道路驱动器或轮胎磨损出来。因此,我们利用最近深层学习的进展,提议采用轮式轨道测量神经网络(WhONet),以准确了解为校正和准确定位所需的轮轮式速度测量的不确定性。拟议的WhONet的性能首先根据若干具有挑战性的驾驶情景进行评估,例如环路、急转角、硬布拉克和湿道(drivts)等。然后,在30、60和180公里的轮式神经神经网络(WONetet)路或轮胎的超时,可以进一步和广泛评估长期导航系统越轨情况。在30、60公里、120、180和180公里的轨道(Onforfass)后,可以显示其飞行的飞行的飞行的飞行的长度飞行的长度为减少。