Our work targets at searching feasible adversarial perturbation to attack a classifier with high-dimensional categorical inputs in a domain-agnostic setting. This is intrinsically an NP-hard knapsack problem where the exploration space becomes explosively larger as the feature dimension increases. Without the help of domain knowledge, solving this problem via heuristic method, such as Branch-and-Bound, suffers from exponential complexity, yet can bring arbitrarily bad attack results. We address the challenge via the lens of multi-armed bandit based combinatorial search. Our proposed method, namely FEAT, treats modifying each categorical feature as pulling an arm in multi-armed bandit programming. Our objective is to achieve highly efficient and effective attack using an Orthogonal Matching Pursuit (OMP)-enhanced Upper Confidence Bound (UCB) exploration strategy. Our theoretical analysis bounding the regret gap of FEAT guarantees its practical attack performance. In empirical analysis, we compare FEAT with other state-of-the-art domain-agnostic attack methods over various real-world categorical data sets of different applications. Substantial experimental observations confirm the expected efficiency and attack effectiveness of FEAT applied in different application scenarios. Our work further hints the applicability of FEAT for assessing the adversarial vulnerability of classification systems with high-dimensional categorical inputs.


翻译:我们的工作目标是寻找可行的对抗性扰动,以攻击在域名中具有高度绝对投入的分类者。这本质上是一个NP-hard knapsack问题,即随着特征层面的增加,探索空间会变得爆炸性更大。没有域知识的帮助,通过外观方法(如分形和分形)解决这个问题就会受到指数复杂性的影响,但也可以带来任意恶劣的攻击结果。我们通过多臂强盗的组合搜索的镜头来应对这一挑战。我们提出的方法,即FEAT,将每个绝对特征的改变视为在多臂强盗编程中拉动一个手臂。我们的目标是利用Orthoopogonal Matchit(OMP)-增强高度信任(UCB)的探索战略,实现高效和有效的攻击。我们对FEAT的遗憾差距进行理论分析,保证其实际攻击性能。在实证分析中,我们将FAT与其他最先进的域名攻击方法比于不同应用程序中的各种真实的绝对数据集。实质性实验观测证实了我们应用的FAT的可靠性应用性应用率和FAT系统。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年2月14日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员