Mixed Membership Models (MMMs) are a popular family of latent structure models for complex multivariate data. Instead of forcing each subject to belong to a single cluster, MMMs incorporate a vector of subject-specific weights characterizing partial membership across clusters. With this flexibility come challenges in uniquely identifying, estimating, and interpreting the parameters. In this article, we propose a new class of Dimension-Grouped MMMs (Gro-M$^3$s) for multivariate categorical data, which improve parsimony and interpretability. In Gro-M$^3$s, observed variables are partitioned into groups such that the latent membership is constant for variables within a group but can differ across groups. Traditional latent class models are obtained when all variables are in one group, while traditional MMMs are obtained when each variable is in its own group. The new model corresponds to a novel decomposition of probability tensors. Theoretically, we derive transparent identifiability conditions for both the unknown grouping structure and model parameters in general settings. Methodologically, we propose a Bayesian approach for Dirichlet Gro-M$^3$s to inferring the variable grouping structure and estimating model parameters. Simulation results demonstrate good computational performance and empirically confirm the identifiability results. We illustrate the new methodology through applications to a functional disability survey dataset and a personality test dataset.
翻译:混合成员模式( MMMM) 是复杂多变数据的潜在结构模型的流行组合组合。 MMMM没有强迫每个主体都属于一个单一组群,而是将一个特定对象的量子矢量作为不同组群部分成员的特点。 随着这种灵活性在独特识别、估算和解释参数方面出现挑战。 在本条中,我们提议为多变量组合绝对数据(Gro-M$3$s)建立一个新的类别,它可以改善对等和可解释性。在Gro-M$3美元中,观察到的变量被分成一个组群,使某个组群的变量潜在成员不变,但各组之间可能有所不同。当所有变量都属于一个组时,传统的潜在类模式就获得,而每个变量属于本组,则获得传统的MMMMMMmmm。新模型相当于概率变数的新变数变数的变数。理论上,我们为一般环境中未知的组合结构和模型参数提供了透明的可识别性条件。在方法上,我们建议对Dilet Gro-M$3美元组的变量组成采用一种潜在成员方式,但不同组群组的功能性计算结果将显示可衡量性数据模型。