Evolutionary algorithms (EAs) have emerged as a powerful framework for optimization, especially for black-box optimization. This paper first focuses on automated EA: Automated EA exploits structure in the problem of interest to automatically generate update rules (optimization strategies) for generating and selecting potential solutions so that it can move a random population near the optimal solution. However, current EAs cannot achieve this goal due to the poor representation of the optimization strategy and the weak interaction between the optimization strategy and the target task. We design a deep evolutionary convolution network (DECN) to realize the move from hand-designed EAs to automated EAs without manual interventions. DECN has high adaptability to the target task and can obtain better solutions with less computational cost. DECN is also able to effectively utilize the low-fidelity information of the target task to form an efficient optimization strategy. The experiments on nine synthetics and two real-world cases show the advantages of learned optimization strategies over the state-of-the-art human-designed and meta-learning EA baselines. In addition, due to the tensorization of the operations, DECN is friendly to the acceleration provided by GPUs and runs 102 times faster than EA.
翻译:暂无翻译