In open-world semi-supervised learning, a machine learning model is tasked with uncovering novel categories from unlabeled data while maintaining performance on seen categories from labeled data. The central challenge is the substantial learning gap between seen and novel categories, as the model learns the former faster due to accurate supervisory information. To address this, we introduce 1) an adaptive margin loss based on estimated class distribution, which encourages a large negative margin for samples in seen classes, to synchronize learning paces, and 2) pseudo-label contrastive clustering, which pulls together samples which are likely from the same class in the output space, to enhance novel class discovery. Our extensive evaluations on multiple datasets demonstrate that existing models still hinder novel class learning, whereas our approach strikingly balances both seen and novel classes, achieving a remarkable 3% average accuracy increase on the ImageNet dataset compared to the prior state-of-the-art. Additionally, we find that fine-tuning the self-supervised pre-trained backbone significantly boosts performance over the default in prior literature. After our paper is accepted, we will release the code.
翻译:暂无翻译