Accurate and reliable sensor calibration is critical for fusing LiDAR and inertial measurements in autonomous driving. This paper proposes a novel three-stage extrinsic calibration method between LiDAR and GNSS/INS for autonomous driving. The first stage can quickly calibrate the extrinsic parameters between the sensors through point cloud surface features so that the extrinsic can be narrowed from a large initial error to a small error range in little time. The second stage can further calibrate the extrinsic parameters based on LiDAR-mapping space occupancy while removing motion distortion. In the final stage, the z-axis errors caused by the plane motion of the autonomous vehicle are corrected, and an accurate extrinsic parameter is finally obtained. Specifically, This method utilizes the planar features in the environment, making it possible to quickly carry out calibration. Experimental results on real-world data sets demonstrate the reliability and accuracy of our method. The codes are open-sourced on the Github website. The code link is https://github.com/OpenCalib/LiDAR2INS.
翻译:精确和可靠的传感器校准对于自动驾驶时使用LiDAR和惯性测量至关重要。本文件建议使用LiDAR和GNSS/INS之间的新型三阶段外部校准方法进行自主驾驶。第一阶段可以通过点云表面特征快速校准传感器之间的外部参数,以便将外部参数从最初的大误差缩小到很小的误差范围。第二阶段可以进一步校准基于LiDAR绘图空间占用空间的极限参数,同时消除运动扭曲。在最后阶段,对自主飞行器的平面运动造成的Z轴错误进行校正,并最终获得准确的极限参数。具体地说,这种方法利用环境中的平面特征,以便能够迅速进行校准。现实世界数据的实验结果显示我们的方法的可靠性和准确性。代码在Github网站上是开放源的。代码链接是 https://github.com/ OpenCalib/LiDAR2INS。</s>