Quantifying uncertainty using confidence regions is a central goal of statistical inference. Despite this, methodologies for confidence bands in Functional Data Analysis are still underdeveloped compared to estimation and hypothesis testing. In this work, we present a new methodology for constructing simultaneous confidence bands for functional parameter estimates. Our bands possess a number of positive qualities: (1) they are not based on resampling and thus are fast to compute, (2) they are constructed under the fairness constraint of balanced false positive rates across partitions of the bands' domain which facilitates the typical global, but also novel local interpretations, and (3) they do not require an estimate of the full covariance function and thus can be used in the case of fragmentary functional data. Simulations show the excellent finite-sample behavior of our bands in comparison to existing alternatives. The practical use of our bands is demonstrated in two case studies on sports biomechanics and fragmentary growth curves.
翻译:利用信任区域量化不确定性是统计推断的中心目标。尽管如此,功能数据分析中信任带的方法与估计和假设测试相比仍然不够完善。在这项工作中,我们提出了为功能参数估计同时构建信任带的新方法。我们的频带具有若干积极性:(1) 它们不是基于重新取样,因此可以快速计算;(2) 它们是在有利于典型的全球解释但也是新颖的地方解释的波段区域间平衡的假正率的公平制约下构建的,(3) 它们不需要对完全变量功能进行估计,因此可以用于碎片功能数据。模拟表明,与现有的替代方法相比,我们的波段的有限抽样行为是极好的。我们的波段的实际用途体现在关于体育生物机械学和零碎增长曲线的两个案例研究中。