It is common to model a deterministic response function, such as the output of a computer experiment, as a Gaussian process with a Mat\'ern covariance kernel. The smoothness parameter of a Mat\'ern kernel determines many important properties of the model in the large data limit, including the rate of convergence of the conditional mean to the response function. We prove that the maximum likelihood estimate of the smoothness parameter cannot asymptotically undersmooth the truth when the data are obtained on a fixed bounded subset of $\mathbb{R}^d$. That is, if the data-generating response function has Sobolev smoothness $\nu_0 + d/2$, then the smoothness parameter estimate cannot be asymptotically less than $\nu_0 + d/2$. The lower bound is sharp. Additionally, we show that maximum likelihood estimation finds the "correct" smoothness for a class of compactly supported self-similar functions. We also consider cross-validation and prove an asymptotic lower bound $\nu_0$, which however is unlikely to be sharp. The results are based on approximation theory in Sobolev spaces and some general theorems that restrict the set of values that the parameter estimators can take.
翻译:以 Mat\'ern 内核的顺畅度参数在大数据限量中决定模型的很多重要属性, 包括条件平均值与响应函数的趋同率。 我们证明光滑度参数的最大可能性估计值不能以固定约束子组的 $\mathbb{R ⁇ d$ 获得数据时的“ 校正” 平滑度。 也就是说, 如果数据生成响应函数具有 Sobolev sality $\\ n_ 0 + d/2$, 那么光滑度参数估计不能以纯度小于$\ n_ 0 + d/2$ 。 下限是锐利的。 此外, 我们显示, 当数据在固定约束子组的 $\ mustedbb{R ⁇ dd$ 上获得数据时, 光滑度参数的最大概率估计不能以“ 校正” 的平滑度为真理。 我们还认为交叉校正值和证明是低约束的 $\ n_ 0 位值, 但是光度参数的精确值是基础的。