Implicit neural networks (INNs) are very effective for learning data representation. However, most INNs inevitably generate over-smoothed patches or obvious noisy artifacts in the results when the data has many scales of details or a wide range of frequencies, leading to significant performance reduction. Adapting the result containing both noise and over-smoothed regions usually suffers from either over smoothing or noisy issues. To overcome this challenge, we propose a new framework, coined FINN, that integrated a \emph{filtering} module to the \emph{implicit neural network} to perform data fitting while filtering artifacts. The filtering module has a smoothing operator that acts on the intermediate results of the network and a recovering operator that brings distinct details from the input back to the regions overly smoothed. The proposed method significantly alleviates over smoothing or noisy issues. We demonstrate the advantage of the FINN on the image regression task, considering both real and synthetic images, and showcases significant improvement on both quantitative and qualitative results compared to state-of-the-art methods. Moreover, FINN yields better performance in both convergence speed and network stability. Source code is available at https://github.com/yixin26/FINN.


翻译:内含噪音的神经网络(INNs)对于学习数据代表性非常有效。然而,大多数INNs在数据具有许多详细程度或频度大,导致性能显著下降的情况下,结果中必然会产生过度移动的补丁或明显的噪音制品。对含有噪音和过度拥挤区域的结果进行调整通常会造成过于平滑或吵闹的问题。为了克服这一挑战,我们提议了一个新的框架,即FINN, 将一个模版并入\emph{filectrate} 神经网络,以便在过滤文物时进行数据安装。过滤模块有一个平稳操作,对网络的中间结果采取行动,并恢复操作,将投入的不同细节带回到过于平滑的地区。拟议的方法大大缓解了平滑或吵闹的问题。我们从真实和合成图像的角度展示了FINN在图像回归任务上的优势,并展示了与州-艺术方法相比,定量和定性结果的显著改进。此外,FINN/FINS/FINS在可使用的速度/FINCRA中生成的更好表现。

0
下载
关闭预览

相关内容

【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
讲座报名丨 ICML专场
THU数据派
0+阅读 · 2021年9月15日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
3+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Simplicial Attention Networks
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
24+阅读 · 2018年10月24日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
讲座报名丨 ICML专场
THU数据派
0+阅读 · 2021年9月15日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关论文
Simplicial Attention Networks
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
24+阅读 · 2018年10月24日
相关基金
国家自然科学基金
3+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员