In this work, an adaptive finite element algorithm for symmetric second-order elliptic diffusion problems with inexact solver is developed. The discrete systems are treated by a local higher-order geometric multigrid method extending the approach of [Mira\c{c}i, Pape\v{z}, Vohral\'{i}k, SIAM J. Sci. Comput. (2021)]. We show that the iterative solver contracts the algebraic error robustly with respect to the polynomial degree $p \ge 1$ and the (local) mesh size $h$. We further prove that the built-in algebraic error estimator is $h$- and $p$-robustly equivalent to the algebraic error. The proofs rely on suitably chosen robust stable decompositions and a strengthened Cauchy-Schwarz inequality on bisection-generated meshes. Together, this yields that the proposed adaptive algorithm has optimal computational cost. Numerical experiments confirm the theoretical findings.
翻译:在这项工作中,开发了对称二阶椭圆扩散问题的适应性有限要素算法,使用不尽然的求解器处理离散系统,采用当地高阶几何多格方法处理离散系统,扩大[Mira\c{c}i, Pape\v{z}, Vohral\'i}k, SIAM J. Sci. comput. (2021)]。我们显示,迭代求解器在多角度1美元Ge 1美元和(当地)网状1美元方面,将代数错误紧密地联系在一起。我们进一步证明,内建的代数错误估计值等于[Mira\c{c{c}i, Pape\v{z}, Vohrralal\'{i}k, SIAM J. Sci. Comput. (2021) 。我们发现, 迭代形解算法在双层生成的介质上,其代谢值的代谢值的代谢差差值是强的。这使得拟议的适应算算算算算得最优。