In past years, the minimax type single-level optimization formulation and its variations have been widely utilized to address Generative Adversarial Networks (GANs). Unfortunately, it has been proved that these alternating learning strategies cannot exactly reveal the intrinsic relationship between the generator and discriminator, thus easily result in a series of issues, including mode collapse, vanishing gradients and oscillations in the training phase, etc. In this work, by investigating the fundamental mechanism of GANs from the perspective of hierarchical optimization, we propose Best-Response Constraint (BRC), a general learning framework, that can explicitly formulate the potential dependency of the generator on the discriminator. Rather than adopting these existing time-consuming bilevel iterations, we design an implicit gradient scheme with outer-product Hessian approximation as our fast solution strategy. \emph{Noteworthy, we demonstrate that even with different motivations and formulations, a variety of existing GANs ALL can be uniformly improved by our flexible BRC methodology.} Extensive quantitative and qualitative experimental results verify the effectiveness, flexibility and stability of our proposed framework.
翻译:在过去几年里,小型最大类型单级优化配方及其变异被广泛用于处理基因反转网络(GANs)的问题。不幸的是,这些交替学习战略已经证明,这些交替学习战略无法准确地揭示出产生者与歧视者之间的内在关系,因此很容易导致一系列问题,包括模式崩溃、梯度消失、培训阶段的振荡等等。 在这项工作中,我们从等级优化的角度来调查GAN的基本机制,提出最佳反应控制(BRC),这是一个总学习框架,可以明确确定产生者对歧视者的潜在依赖性。 我们不是采用这些耗时的双层迭代,而是设计一个含外产赫斯近似的隐含梯度计划,作为我们的快速解决方案战略。 \emph{值得注意的是,我们证明,即使有不同的动机和配方,现有的各种GANs 全部都可以通过我们灵活的BRC方法得到一致的改进。}广泛的定量和定性实验结果可以核实我们拟议框架的有效性、灵活性和稳定性。