Motivated by recent work on Delaunay triangulations of hyperbolic surfaces, we consider the minimal number of vertices of such triangulations. First, we will show that every hyperbolic surface of genus $g$ has a simplicial Delaunay triangulation with $O(g)$ vertices, where edges are given by distance paths. Then, we will construct a class of hyperbolic surfaces for which the order of this bound is optimal. Finally, to give a general lower bound, we will show that the $\Omega(\sqrt{g})$ lower bound for the number of vertices of a simplicial triangulation of a topological surface of genus $g$ is tight for hyperbolic surfaces as well.
翻译:受最近对双曲表面三角图案的研究的启发,我们考虑了此类三角图案最少的脊椎数量。 首先,我们将显示,每张双曲面的genus $g$ 上,每个双曲面的三角图案都有1美元(g) $(g) 的简化式 Delaunay 三角图案,其边缘是用距离路径给定的。 然后,我们将建造一组双曲面表层,该边框的顺序是最佳的。 最后,为了给一般的下限,我们将显示,对于超曲面表面的表面表面,1美元(sqrt{g}) 的表面三角图案,1美元(g) 的表面三角图案数的美元(simcliclicic tranging)的值较低约束值是紧紧的。