Sensitivity measures how much the output of an algorithm changes, in terms of Hamming distance, when part of the input is modified. While approximation algorithms with low sensitivity have been developed for many problems, no sensitivity lower bounds were previously known for approximation algorithms. In this work, we establish the first polynomial lower bound on the sensitivity of (randomized) approximation algorithms for constraint satisfaction problems (CSPs) by adapting the probabilistically checkable proof (PCP) framework to preserve sensitivity lower bounds. From this, we derive polynomial sensitivity lower bounds for approximation algorithms for a variety of problems, including maximum clique, minimum vertex cover, and maximum cut. Given the connection between sensitivity and distributed algorithms, our sensitivity lower bounds also allow us to recover various round complexity lower bounds for distributed algorithms in the LOCAL model. Additionally, we present new lower bounds for distributed CSPs.
翻译:暂无翻译