Noisy matrix completion has attracted significant attention due to its applications in recommendation systems, signal processing and image restoration. Most existing works rely on (weighted) least squares methods under various low-rank constraints. However, minimizing the sum of squared residuals is not always efficient, as it may ignore the potential structural information in the residuals. In this study, we propose a novel residual spectral matching criterion that incorporates not only the numerical but also locational information of residuals. This criterion is the first in noisy matrix completion to adopt the perspective of low-rank perturbation of random matrices and exploit the spectral properties of sparse random matrices. We derive optimal statistical properties by analyzing the spectral properties of sparse random matrices and bounding the effects of low-rank perturbations and partial observations. Additionally, we propose algorithms that efficiently approximate solutions by constructing easily computable pseudo-gradients. The iterative process of the proposed algorithms ensures convergence at a rate consistent with the optimal statistical error bound. Our method and algorithms demonstrate improved numerical performance in both simulated and real data examples, particularly in environments with high noise levels.
翻译:暂无翻译