Pretraining neural networks with massive unlabeled datasets has become popular as it equips the deep models with a better prior to solve downstream tasks. However, this approach generally assumes that the downstream tasks have access to annotated data of sufficient size. In this work, we propose ALOE, a novel system for improving the data- and label-efficiency of non-semantic speech tasks with active learning. ALOE uses pretrained models in conjunction with active learning to label data incrementally and learn classifiers for downstream tasks, thereby mitigating the need to acquire labeled data beforehand. We demonstrate the effectiveness of ALOE on a wide range of tasks, uncertainty-based acquisition functions, and model architectures. Training a linear classifier on top of a frozen encoder with ALOE is shown to achieve performance similar to several baselines that utilize the entire labeled data.
翻译:使用大量未贴标签的数据集对神经网络进行预先培训已变得很受欢迎,因为它在解决下游任务之前为深层模型提供了更好的工具,然而,这一方法一般假定下游任务可以获得足量的附加说明数据。在这项工作中,我们提议ALOE,这是一个创新的系统,通过积极学习来提高非静态语音任务的数据和标签效率。ALOE在积极学习的同时,使用预先培训的模型,对下游任务进行数据递增标签和学习分类,从而减少了事先获取标签数据的必要性。我们展示了ALOE在一系列广泛任务、基于不确定性的获取功能和模型结构上的有效性。在与ALOE一起的冷冻编码器顶部培训一个线性分类师,其性能与使用整个标签数据的若干基线相似。</s>