We tackle the non-convex problem of learning a personalized deep learning model in a decentralized setting. More specifically, we study decentralized federated learning, a peer-to-peer setting where data is distributed among many clients and where there is no central server to orchestrate the training. In real world scenarios, the data distributions are often heterogeneous between clients. Therefore, in this work we study the problem of how to efficiently learn a model in a peer-to-peer system with non-iid client data. We propose a method named Performance-Based Neighbor Selection (PENS) where clients with similar data distributions detect each other and cooperate by evaluating their training losses on each other's data to learn a model suitable for the local data distribution. Our experiments on benchmark datasets show that our proposed method is able to achieve higher accuracies as compared to strong baselines.


翻译:更具体地说,我们研究分散化的联盟式学习,即同侪学习,即将数据分配给许多客户,而且没有中央服务器来安排培训的同侪学习。在现实世界中,用户之间的数据分布往往各不相同。因此,在这项工作中,我们研究如何在同侪系统中以非二类客户数据高效率地学习模式的问题。我们提出了一种名为“基于性能的邻居选择”的方法,在这种方法中,拥有类似数据分发的客户相互检测,并通过评价对方数据的培训损失来合作,学习适合本地数据分布的模型。我们在基准数据集方面的实验表明,我们提出的方法能够达到比强基线更高的理解度。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
7+阅读 · 2021年4月30日
Arxiv
10+阅读 · 2021年3月30日
VIP会员
相关VIP内容
相关资讯
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员