It is widely perceived that leveraging the success of modern machine learning techniques to mobile devices and wireless networks has the potential of enabling important new services. This, however, poses significant challenges, essentially due to that both data and processing power are highly distributed in a wireless network. In this paper, we develop a learning algorithm and an architecture that make use of multiple data streams and processing units, not only during the training phase but also during the inference phase. In particular, the analysis reveals how inference propagates and fuses across a network. We study the design criterion of our proposed method and its bandwidth requirements. Also, we discuss implementation aspects using neural networks in typical wireless radio access; and provide experiments that illustrate benefits over state-of-the-art techniques.
翻译:人们普遍认为,将现代机器学习技术的成功运用到移动装置和无线网络,有可能促成重要的新服务,但是,这带来了重大挑战,主要是因为数据和处理能力在无线网络中分布甚广。在本文中,我们开发了一种学习算法和结构,不仅在培训阶段,而且在推论阶段,利用多种数据流和处理器。特别是,分析揭示了整个网络的推论和引信是如何传播和引信的。我们研究了我们拟议方法的设计标准及其带宽要求。此外,我们还讨论了在典型无线无线电接入中使用神经网络的实施方面;并提供实验,说明对最新技术的好处。