In this paper, we propose a new global geometry constraint for depth completion. By assuming depth maps often lay on low dimensional subspaces, a dense depth map can be approximated by a weighted sum of full-resolution principal depth bases. The principal components of depth fields can be learned from natural depth maps. The given sparse depth points are served as a data term to constrain the weighting process. When the input depth points are too sparse, the recovered dense depth maps are often over smoothed. To address this issue, we add a colour-guided auto-regression model as another regularization term. It assumes the reconstructed depth maps should share the same nonlocal similarity in the accompanying colour image. Our colour-guided PCA depth completion method has closed-form solutions, thus can be efficiently solved and is significantly more accurate than PCA only method. Extensive experiments on KITTI and Middlebury datasets demonstrate the superior performance of our proposed method.
翻译:在本文中,我们提出一个新的全球几何限制以完成深度。假设深度地图通常位于低维次空间,那么密度深度地图可以用完全分辨率主要深度基数的加权总和来比较。从自然深度图中可以学习深度字段的主要组成部分。给定的稀疏深度点被用作限制加权过程的数据术语。当输入深度点太稀少时,回收的密度深度地图往往过宽。为了解决这个问题,我们增加了一个颜色制导自动回归模型,作为另一个正规化术语。它假定重建后的深度地图在相伴的彩色图像中应该具有相同的非本地相似性。我们的彩色制五氯苯甲醚深度完成方法有封闭式解决方案,因此可以高效地解决,而且比五氯苯甲醚唯一的方法要准确得多。关于KITTI和Midderbury数据集的广泛实验表明我们拟议方法的优异性表现。