In this paper, we present a nonlinear version of the linear elasticity (Calabi, Kr\"oner, Riemannian deformation) complex which encodes isometric embedding, metric, curvature and the Bianchi identity. We reformulate the rigidity theorem and a fundamental theorem of Riemannian geometry as the exactness of this complex. Then we generalize an algebraic approach for constructing finite elements for the Bernstein-Gelfand-Gelfand (BGG) complexes. In particular, we discuss the reduction of degrees of freedom with injective connecting maps in the BGG diagrams. We derive a strain complex in two space dimensions with a diagram chase.
翻译:在本文中,我们提出了线性弹性(Calabi,Kröner,黎曼变形)复合材料的非线性版本,它编码等距嵌入,度量,曲率和Bianchi恒等式。我们重新制定了刚性定理和黎曼几何的一个基本定理,作为这个复杂性的确切性。然后我们推广了一种代数方法,用于构造Bernstein-Gelfand-Gelfand(BGG)复合材料的有限元素。特别是,我们讨论了通过BGG图表中的注射连接映射来减少自由度。我们通过图表追踪导出了二维空间中的应变复合物。