Let $G=(V,E)$ be a multigraph with a set $T\subseteq V$ of terminals. A path in $G$ is called a $T$-path if its ends are distinct vertices in $T$ and no internal vertices belong to $T$. In 1978, Mader showed a characterization of the maximum number of edge-disjoint $T$-paths. In this paper, we provide a combinatorial, deterministic algorithm for finding the maximum number of edge-disjoint $T$-paths. The algorithm adopts an augmenting path approach. More specifically, we utilize a new concept of short augmenting walks in auxiliary labeled graphs to capture a possible augmentation of the number of edge-disjoint $T$-paths. To design a search procedure for a short augmenting walk, we introduce blossoms analogously to the matching algorithm of Edmonds (1965). When the search procedure terminates without finding a short augmenting walk, the algorithm provides a certificate for the optimality of the current edge-disjoint $T$-paths. From this certificate, one can obtain the Edmonds--Gallai type decomposition introduced by Seb\H{o} and Szeg\H{o} (2004). The algorithm runs in $O(|E|^2)$ time, which is much faster than the best known deterministic algorithm based on a reduction to linear matroid parity. We also present a strongly polynomial algorithm for the maximum integer free multiflow problem, which asks for a nonnegative integer combination of $T$-paths maximizing the sum of the coefficients subject to capacity constraints on the edges.
翻译:Let G= (V, E) $ 是一个包含 $T\ subseteteque Vender 的多参数。 以$G$计的路径, 如果其尾端是美元中的截然不同的脊椎, 而没有内部脊椎是属于$T$的, 则被称为$Tdolice 。 1978年, Mader 展示了边缘- 分解 $Tmin- paths 的最大数目的特性。 在本文中, 我们提供了一个组合式、 确定性算法, 用于查找边际- 分解 $T$dolity 路径的最大数目 。 算法采用了一种增强路径方法。 更具体地说, 我们使用一个在辅助标签图表中短的短端加分解 $T$dolpaths 中短段行走行走的轨迹的新概念。 为了设计一个短伸缩过程, 我们引入了与 Edmonds 匹配的算法(1965 ) 。 当搜索程序终止时, 却找不到一个基于 短期增缩行距的双行行, 该行时, 该算算为当前最优化 $Tet- dexcial=xxxxxxxl=xxxxxxxxxxxxxxxxxxxxxxxxxxxxlxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx。