The DLG root-squaring iterations, due to Dandelin 1826 and rediscovered by Lobachevsky 1834 and Graeffe 1837, have been the main approach to root-finding for a univariate polynomial p(x) in the 19th century and beyond, but not so nowadays because these iterations are prone to severe numerical stability problems. Trying to avoid these problems we have found simple but novel reduction of the iterations applied for Newton's inverse ratio -p'(x)/p(x) to approximation of the power sums of the zeros of p(x) and its reverse polynomial. The resulting polynomial root-finders can be devised and performed independently of DLG iterations, based on Newton's identities or Cauchy integrals. In the former case the computation involve a set of leading or tailing coefficients of an input polynomial. In the latter case we must scale the variable and increase the arithmetic computational cost to ensure numerical stability. Nevertheless the cost is still manageable, at least for fast root-refinement, and the algorithms can be applied to a black box polynomial p(x)--given by a black box for the evaluation of the ratio p'(x)/p(x) rather than by its coefficients. This enables important computational benefits, including efficient recursive as well as concurrent approximation of a set of zeros of p(x) or even all of its zeros, acceleration where an input polynomial can be evaluated fast, and extension to approximation of the eigenvalues of a matrix or a polynomial matrix, being efficient if the matrix can be inverted fast, e.g., is data sparse. We also recall our recent fast algorithms for approximation of the root radii, that is, the distances to the roots from the origin or any complex value to the zeros of p(x), and apply it for fast black box initialization of polynomial root-finding by means of functional iterations, e.g., Newton's, Ehrlich's, and Weierstrass's.
翻译:由 Dandelin 1826 和 Lobachevsky 1834 和 Graeffe 1837 重新发现的 DLG 根和 根 根 度 交错 是 19 世纪及 以后, 导致的 univariate 多元 P (x) 的根调查的主要方法, 但不是现在, 因为这些迭代容易发生严重的数值稳定性问题。 我们试图避免这些问题。 试图避免 牛顿 的反比( pdelin 1826 ) 和 Lobachevsky 1834 和 Graeffe 1837 所重新发现的 。 由于 牛顿 身份 或 Cauglicial 整体, 我们发现牛顿 的反比重 。 试图避免 牛顿 的反比重 。 ( plivocial) 和 递增计算成本, 如果 其直流的电算值是, 其直径直径直系 直系 直系 直系 数据 直系 直系 直系, 直系 直系 直系, 直系 直系 直系 直系 直系 直系 数据 直系 直系 直系, 直系 直系 直系 直系 直系 直系 直系 直系 直系 直系, 直系 直系, 直系, 直系 的 直系 直系 直系 直系 直系 直系, 直系 直系 直系 。