An obstacle representation of a graph $G$ consists of a set of pairwise disjoint simply-connected closed regions and a one-to-one mapping of the vertices of $G$ to points such that two vertices are adjacent in $G$ if and only if the line segment connecting the two corresponding points does not intersect any obstacle. The obstacle number of a graph is the smallest number of obstacles in an obstacle representation of the graph in the plane such that all obstacles are simple polygons. It is known that the obstacle number of each $n$-vertex graph is $O(n \log n)$ [Balko, Cibulka, and Valtr, 2018] and that there are $n$-vertex graphs whose obstacle number is $\Omega(n/(\log\log n)^2)$ [Dujmovi\'c and Morin, 2015]. We improve this lower bound to $\Omega(n/\log\log n)$ for simple polygons and to $\Omega(n)$ for convex polygons. To obtain these stronger bounds, we improve known estimates on the number of $n$-vertex graphs with bounded obstacle number, solving a conjecture by Dujmovi\'c and Morin. We also show that if the drawing of some $n$-vertex graph is given as part of the input, then for some drawings $\Omega(n^2)$ obstacles are required to turn them into an obstacle representation of the graph. Our bounds are asymptotically tight in several instances. We complement these combinatorial bounds by two complexity results. First, we show that computing the obstacle number of a graph $G$ is fixed-parameter tractable in the vertex cover number of $G$. Second, we show that, given a graph $G$ and a simple polygon $P$, it is NP-hard to decide whether $G$ admits an obstacle representation using $P$ as the only obstacle.


翻译:图形 $G$ 的障碍表示由一组双向脱节简单连接的封闭障碍区域组成, 以及一对一对一地绘制$G$的顶点, 这样两面的顶点在G$上相邻, 如果并且只有在连接两个对应点的线段没有交叉任何障碍时, 才会有两面的顶点在G$上相邻。 图形的障碍数是图中一个障碍表示所有障碍的最小数量, 这样所有障碍都是简单的多边形。 众所周知, 每面的顶点的顶点数是 $( n\ log n) [Balko, Cibulka, 和Valtrtr] 的顶点数是$( 美元) 。 使用硬的顶点的顶点数, 使用硬点的直点表示一个硬点的硬点數。 以硬点的硬点表示, 以硬点的硬点數值表示, 以硬点表示的硬点數值表示, 以硬点表示的硬值表示, 硬点表示, 硬点的直点表示, 硬点表示, 硬点表示, 硬点表示的硬点表示, 硬点表示的硬的硬点显示的硬数。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年9月7日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年8月22日
Arxiv
0+阅读 · 2022年8月22日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员