We prove that for $k+1\geq 3$ and $c>(k+1)/2$ w.h.p. the random graph on $n$ vertices, $cn$ edges and minimum degree $k+1$ contains a (near) perfect $k$-matching. As an immediate consequence we get that w.h.p. the $(k+1)$-core of $G_{n,p}$, if non empty, spans a (near) spanning $k$-regular subgraph. This improves upon a result of Chan and Molloy and completely resolves a conjecture of Bollob\'as, Kim and Verstra\"{e}te. In addition, we show that w.h.p. such a subgraph can be found in linear time. A substantial element of the proof is the analysis of a randomized algorithm for finding $k$-matchings in random graphs with minimum degree $k+1$.
翻译:我们证明,对于$+1\geq 3美元和$c>(k+1/2美元 w.hp.p.),关于美元顶点、美元边缘和最低度$k+1美元的随机图表包含一个(近)完美的美元匹配。作为直接结果,我们得到的是 w.h.p. $(k+1)美元核心,即$G ⁇ n,p}美元,如果不是空的,则横跨一个(近)一个(近)超过美元常规子图。这在Chan和Molloy之后得到改善,完全解决了Bollob\'as, Kim和Verstra\\\{e}te的预测。此外,我们显示的是,w.h.p. 可以在线性时间找到这样一个子图。证据的一个重要部分是随机化算法的分析,以找到以最低值$+1美元的随机图表中的美元匹配值。