Diffusion models have shown impressive performance for generative modelling of images. In this paper, we present a novel semantic segmentation method based on diffusion models. By modifying the training and sampling scheme, we show that diffusion models can perform lesion segmentation of medical images. To generate an image specific segmentation, we train the model on the ground truth segmentation, and use the image as a prior during training and in every step during the sampling process. With the given stochastic sampling process, we can generate a distribution of segmentation masks. This property allows us to compute pixel-wise uncertainty maps of the segmentation, and allows an implicit ensemble of segmentations that increases the segmentation performance. We evaluate our method on the BRATS2020 dataset for brain tumor segmentation. Compared to state-of-the-art segmentation models, our approach yields good segmentation results and, additionally, detailed uncertainty maps.
翻译:在图像的基因建模方面,传播模型表现出了令人印象深刻的性能。在本文中,我们展示了一种基于扩散模型的新颖的语义分解方法。通过修改培训和取样方法,我们展示了扩散模型可以对医疗图像进行损害分解。为了生成一个图像特定分解,我们在地面对模型进行了地面真象分解培训,并在取样过程中的每个步骤中将图像作为培训前使用。通过给定的分解取样过程,我们可以产生一个分解面面的分布。这一属性使我们能够对分解的分解图进行像素的分解,并允许一个隐含的分解组合来增加分解性性。我们评估了用于脑肿瘤分解的BRATS-2020数据集的方法。与艺术分解模型相比,我们的方法产生良好的分解结果,此外,还有详细的不确定图。