Conventional neural autoregressive decoding commonly assumes a fixed left-to-right generation order, which may be sub-optimal. In this work, we propose a novel decoding algorithm -- InDIGO -- which supports flexible sequence generation in arbitrary orders through insertion operations. We extend Transformer, a state-of-the-art sequence generation model, to efficiently implement the proposed approach, enabling it to be trained with either a pre-defined generation order or adaptive orders obtained from beam-search. Experiments on four real-world tasks, including word order recovery, machine translation, image caption and code generation, demonstrate that our algorithm can generate sequences following arbitrary orders, while achieving competitive or even better performance compared to the conventional left-to-right generation. The generated sequences show that InDIGO adopts adaptive generation orders based on input information.
翻译:常规神经自动递减解码通常假定一种固定的左向右转生成顺序,这种顺序可能不理想。在这项工作中,我们提议了一种新的解码算法 -- -- InDIGO -- -- 支持通过插入操作任意顺序生成。我们扩展了最先进的变异器,即最先进的序列生成模式,以有效实施拟议方法,使其能够接受预先确定的代代号或从梁线研究获得的适应性排序的培训。对四个真实世界任务,包括单单恢复、机器翻译、图像字幕和代码生成的实验,表明我们的算法可以产生任意顺序,同时实现与传统的左向右转生成相比的竞争性甚至更好的性能。生成的序列显示,内地学会采用基于投入信息的适应性生成顺序。