Federated Learning allows training of data stored in distributed devices without the need for centralizing training data, thereby maintaining data privacy. Addressing the ability to handle data heterogeneity (non-identical and independent distribution or non-IID) is a key enabler for the wider deployment of Federated Learning. In this paper, we propose a novel Divide-and-Conquer training methodology that enables the use of the popular FedAvg aggregation algorithm by overcoming the acknowledged FedAvg limitations in non-IID environments. We propose a novel use of Cosine-distance based Weight Divergence metric to determine the exact point where a Deep Learning network can be divided into class agnostic initial layers and class-specific deep layers for performing a Divide and Conquer training. We show that the methodology achieves trained model accuracy at par (and in certain cases exceeding) with numbers achieved by state-of-the-art Aggregation algorithms like FedProx, FedMA, etc. Also, we show that this methodology leads to compute and bandwidth optimizations under certain documented conditions.
翻译:联邦学习联合会(FedAvg Controlation)允许对在分布式设备中储存的数据进行培训,而无需集中培训数据,从而维护数据隐私。 处理数据差异性(非同性和独立分布或非IID)的能力是更广泛地部署联邦学习联合会的关键促进因素。 在本文中,我们提出一种新的分化和征服培训方法,通过克服在非IID环境中公认的FedAvg组合算法限制,使得能够使用流行的FedAvg组合算法。我们提议新颖地使用基于Cosine-远端的 Weight differgence 度测量法,以确定深层学习网络可以分为等级的初始层和班级深层的确切点,以进行分化和分级培训。我们表明,该方法在等程度上(和在某些情况下超过)实现了经过培训的模型精确度,其数量由FedProx、FDMA等最先进的Aggnation算法所实现。此外,我们表明,这一方法在某些有文件记载的条件下可以进行计算和带宽优化。