Learning from Multivariate Time Series (MTS) has attracted widespread attention in recent years. In particular, label shortage is a real challenge for the classification task on MTS, considering its complex dimensional and sequential data structure. Unlike self-training and positive unlabeled learning that rely on distance-based classifiers, in this paper, we propose SMATE, a novel semi-supervised model for learning the interpretable Spatio-Temporal representation from weakly labeled MTS. We validate empirically the learned representation on 22 public datasets from the UEA MTS archive. We compare it with 13 state-of-the-art baseline methods for fully supervised tasks and four baselines for semi-supervised tasks. The results show the reliability and efficiency of our proposed method.
翻译:近年来,多变时间序列(MTS)的学习引起了广泛的关注,特别是,考虑到多边贸易体系的复杂多维和顺序数据结构,标签短缺对多边贸易体系的分类任务是一个真正的挑战。与依靠远程分类的自我培训和积极的无标签学习不同,在本文件中,我们建议SMATE(SMATE),这是一个新的半监督模式,用于从标签不高的多边贸易体系中学习可解释的Spatio-时间序列(Spatio-时间序列)。我们从经验上验证了从UEA MTS档案中获取的22个公共数据集的学术代表性。我们将其与13个最先进的充分监督任务基准方法和4个半监督任务基线进行比较。结果显示了我们拟议方法的可靠性和效率。