Integrated Sensing and Communications (ISAC) surpasses the conventional frequency-division sensing and communications (FDSAC) in terms of spectrum, energy, and hardware efficiency, with potential for greater enhancement through integration of non-orthogonal multiple access (NOMA). Leveraging these advantages, a multiple-input multiple-output NOMA-ISAC framework is proposed in this paper, in which the technique of signal alignment is adopted. The performance of the proposed framework for both downlink and uplink is analyzed. 1) The downlink ISAC is investigated under three different precoding designs: a sensing-centric (S-C) design, a communications-centric (C-C) design, and a Pareto optimal design. 2) For the uplink case, two scenarios are investigated: a S-C design and a C-C design, which vary based on the order of interference cancellation between the communication and sensing signals. In each of these scenarios, key performance metrics including sensing rate (SR), communication rate (CR), and outage probability are investigated. For a deeper understanding, the asymptotic performance of the system in the high signal-to-noise ratio (SNR) region is also explored, with a focus on the high-SNR slope and diversity order. Finally, the SR-CR rate regions achieved by ISAC and FDSAC are studied. Numerical results reveal that in both downlink and uplink cases, ISAC outperforms FDSAC in terms of sensing and communications performance and is capable of achieving a broader rate region, clearly showcasing its superiority.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
11+阅读 · 2018年4月8日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员