Chest X-ray (CXR) is the most typical medical image worldwide to examine various thoracic diseases. Automatically localizing lesions from CXR is a promising way to alleviate radiologists' daily reading burden. However, CXR datasets often have numerous image-level annotations and scarce lesion-level annotations, and more often, without annotations. Thus far, unifying different supervision granularities to develop thoracic disease detection algorithms has not been comprehensively addressed. In this paper, we present OXnet, the first deep omni-supervised thoracic disease detection network to our best knowledge that uses as much available supervision as possible for CXR diagnosis. Besides fully supervised learning, to enable learning from weakly-annotated data, we guide the information from a global classification branch to the lesion localization branch by a dual attention alignment module. To further enhance global information learning, we impose intra-class compactness and inter-class separability with a global prototype alignment module. For unsupervised data learning, we extend the focal loss to be its soft form to distill knowledge from a teacher model. Extensive experiments show the proposed OXnet outperforms competitive methods with significant margins. Further, we investigate omni-supervision under various annotation granularities and corroborate OXnet is a promising choice to mitigate the plight of annotation shortage for medical image diagnosis.
翻译:切斯特X射线( CXR) 是全世界最典型的医学图像, 用于检查各种色素疾病。 CXR 的自动定位损害是减轻放射科医生日常阅读负担的一个很有希望的方法。 然而, CXR 数据集往往有许多图像级的注解和稀少的损伤级的注解, 更经常地, 也没有附加说明。 到目前为止, 统一不同的监督颗粒, 以开发色素疾病检测算法( CXR ) 尚未得到全面处理 。 在本文中, 我们展示了OXnet, 这是我们最深层全宇宙监督的血清检测网络网络, 最先进的知识, 利用尽可能多的现有监督来进行 CXR 诊断。 除了充分监督的学习, 能够从微弱的附加说明性数据学习, 我们还指导全球分类部门的信息, 通过双重的注意力调整模块, 进一步提升全球信息学习, 我们把本级的紧紧紧和跨级的血压和跨级的血清调控点与全球原型校准模块。 我们提出的数据学习, 将焦点损失扩展为软形式, 以大幅的OX 底底底底级的智能模型, 实验显示教师的实验。