We analyze the data-dependent capacity of neural networks and assess anomalies in inputs from the perspective of networks during inference. The notion of data-dependent capacity allows for analyzing the knowledge base of a model populated by learned features from training data. We define purview as the additional capacity necessary to characterize inference samples that differ from the training data. To probe the purview of a network, we utilize gradients to measure the amount of change required for the model to characterize the given inputs more accurately. To eliminate the dependency on ground-truth labels in generating gradients, we introduce confounding labels that are formulated by combining multiple categorical labels. We demonstrate that our gradient-based approach can effectively differentiate inputs that cannot be accurately represented with learned features. We utilize our approach in applications of detecting anomalous inputs, including out-of-distribution, adversarial, and corrupted samples. Our approach requires no hyperparameter tuning or additional data processing and outperforms state-of-the-art methods by up to 2.7%, 19.8%, and 35.6% of AUROC scores, respectively.


翻译:我们从训练数据中学到的特征构成了模型中的知识基础。我们定义研究范围为网络所需额外容量以描述不同于训练数据的推断样本。为了探究网络的研究范围,我们利用梯度测量模型为更准确表征给定输入所需的变化量。为了消除在生成梯度时对基准标签的依赖性,我们引入了混淆标签,将多个分类标签结合在一起。我们证明了我们的基于梯度的方法可以有效地区分无法准确表示学习特征的输入。我们在检测异常输入方面应用我们的方法,包括未知领域、对抗性和损坏样本。我们的方法不需要超参数调整或额外的数据处理,并且在 AUROC 得分方面比最先进的方法分别表现出高达2.7%、19.8%和35.6%的优势。

0
下载
关闭预览

相关内容

梯度的本意是一个向量(矢量),表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模)。
【图神经网络导论】Intro to Graph Neural Networks,176页ppt
专知会员服务
125+阅读 · 2021年6月4日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
32+阅读 · 2020年4月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月29日
Arxiv
0+阅读 · 2023年5月26日
Arxiv
12+阅读 · 2022年11月21日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员