Emergent communication, also known as symbol emergence, seeks to investigate computational models that can better explain human language evolution and the creation of symbol systems. This study aims to provide a new model for emergent communication, which is based on a probabilistic generative model. We define the Metropolis-Hastings (MH) naming game by generalizing a model proposed by Hagiwara et al. \cite{hagiwara2019symbol}. The MH naming game is a sort of MH algorithm for an integrative probabilistic generative model that combines two agents playing the naming game. From this viewpoint, symbol emergence is regarded as decentralized Bayesian inference, and semiotic communication is regarded as inter-personal cross-modal inference. We also offer Inter-GMM+VAE, a deep generative model for simulating emergent communication, in which two agents create internal representations and categories and share signs (i.e., names of objects) from raw visual images observed from different viewpoints. The model has been validated on MNIST and Fruits 360 datasets. Experiment findings show that categories are formed from real images observed by agents, and signs are correctly shared across agents by successfully utilizing both of the agents' views via the MH naming game. Furthermore, it has been verified that the visual images were recalled from the signs uttered by the agents. Notably, emergent communication without supervision and reward feedback improved the performance of unsupervised representation learning.
翻译:新兴通信(又称符号出现)寻求调查计算模型,以更好地解释人类语言演变和创建符号系统。本研究旨在为突发通信提供新的模型,该模型以概率感化模型为基础。我们定义了大都会-哈斯丁(MH)命名游戏,将Hagiwara等人(cite{hagiwara2019symbol)提出的模型加以概括化。MH命名游戏是一种MH算法,用于一种综合稳定型变异模型,该模型结合了两个玩命名游戏的代理商。从这个角度出发,符号的出现被视为分散的贝耶斯推断,而半调频通信则被视为个人之间的跨模式推断。我们还提供跨GMMM+VAE(MVAE)的命名游戏命名游戏,这是一个用于模拟突发通信的深度模型,其中两个代理商从不同角度观测到的原始视觉图像(即物品名称)产生内部陈述和类别和分享符号(即物品名称)。该模型在非MNIST和Festrivers360数据中被验证为分散的隐喻的推断,通过真实的图像,通过虚拟代理商对图像进行正确校验测,通过真实的图像的图像进行模拟分析,通过真实的验证,通过真实的图像的图像和图像的验证结果显示,通过真实的图像显示,通过真实的图像显示的图像显示的图像显示,通过真实的标志和图像的图像的图像的图像的标记和图像的模拟的标记,通过真实的标记和图像的模拟的标记和图像的标记,通过真实的制作的标记,通过真实的标记和精确的检验结果显示,由真实的标记和图像的标记和精确的显示的标记和图像的标记的标记和精确的标记,由真实的标记的标记的标记的标记的标记和精确的标记的标记的标记的标记的标记的标记的标记的标记的标记的标记是正确的标记的标记的标记的标记的标记是由。