Speech representations learned from Self-supervised learning (SSL) models can benefit various speech processing tasks. However, utilizing SSL representations usually requires fine-tuning the pre-trained models or designing task-specific downstream models and loss functions, causing much memory usage and human labor. Recently, prompting in Natural Language Processing (NLP) has been found to be an efficient technique to leverage pre-trained language models (LMs). Specifically, prompt tuning optimizes a limited number of task-specific parameters with a fixed pre-trained model; as a result, only a small set of parameters is needed to be stored for each task. Prompt tuning improves computation and memory efficiency by leveraging the pre-trained LM's prediction ability. Nevertheless, such a paradigm is little studied in the speech community. We report in this paper the first exploration of the prompt tuning paradigm for speech processing tasks based on Generative Spoken Language Model (GSLM). Experiment results show that the prompt tuning technique achieves competitive performance in speech classification tasks with fewer trainable parameters than fine-tuning specialized downstream models. We further study the technique in challenging sequence generation tasks. Prompt tuning also demonstrates its potential, while the limitation and possible research directions are discussed in this paper. The source code is available on https://github.com/ga642381/SpeechPrompt.


翻译:从自我监督学习(SSL)模式中学习的语音演讲方式能够有助于各种语言处理任务。但是,利用SSL代表通常需要微调预先培训的模式或设计特定任务特定下游模式和损失功能,从而产生大量的记忆用和人工劳动。最近,在自然语言处理(NLP)中,促进自然语言处理(NLP)被认为是利用预先培训语言模式(LMS)的一个有效方法。具体地说,迅速调整使数量有限的特定任务参数优化,采用固定的预先培训模式;因此,只需要为每项任务储存一小套参数即可。迅速调整通过利用预先培训LM的预测能力提高计算和记忆效率。然而,这种模式在演讲界很少研究。我们在本文件中报告首次探索根据Genement Spoken语言模式(GLM)对语音处理任务的迅速调整模式进行探索。实验结果显示,迅速调整技术在语言分类任务中实现竞争性表现,其培训参数比精细调整专业下游模式要少。我们进一步研究了生成序列的技术。Propriming 81 Sprimal refriction souring the res.

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
14+阅读 · 2022年5月6日
Arxiv
15+阅读 · 2021年12月22日
Arxiv
19+阅读 · 2021年6月15日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员