As broadband Internet speeds continue to increase, the home wireless ("WiFi") network may more frequently become a performance bottleneck. Past research, now nearly a decade old, initially documented this phenomenon through indirect inference techniques, noting the prevalence of WiFi bottlenecks but never directly measuring them. In the intervening years, access network (and WiFi) speeds have increased, warranting a re-appraisal of this important question, particularly with renewed private and federal investment in access network infrastructure. This paper studies this question, developing a new system and measurement technique to perform direct measurements of WiFi and access network performance, ultimately collecting and analyzing a first-of-its-kind dataset of more than 13,000 joint measurements of WiFi and access network throughputs, in a real-world deployment spanning more than 50 homes, for nearly two years. Using this dataset, we re-examine the question of whether, when, and to what extent a user's home wireless network may be a performance bottleneck, particularly relative to their access connection. We do so by directly and continuously measuring the user's Internet performance along two separate components of the Internet path -- from a wireless client inside the home network to the wired point of access (e.g., the cable modem), and from the wired point of access to the user's ISP. Confirming and revising results from more than a decade ago, we find that a user's home wireless network is often the throughput bottleneck. In particular, for users with access links that exceed 800~Mbps, the user's home wireless network was the performance bottleneck 100% of the time.
翻译:暂无翻译