We develop Few-Shot Learning models trained to recognize five or ten different dynamic hand gestures, respectively, which are arbitrarily interchangeable by providing the model with one, two, or five examples per hand gesture. All models were built in the Few-Shot Learning architecture of the Relation Network (RN), in which Long-Short-Term Memory cells form the backbone. The models use hand reference points extracted from RGB-video sequences of the Jester dataset which was modified to contain 190 different types of hand gestures. Result show accuracy of up to 88.8% for recognition of five and up to 81.2% for ten dynamic hand gestures. The research also sheds light on the potential effort savings of using a Few-Shot Learning approach instead of a traditional Deep Learning approach to detect dynamic hand gestures. Savings were defined as the number of additional observations required when a Deep Learning model is trained on new hand gestures instead of a Few Shot Learning model. The difference with respect to the total number of observations required to achieve approximately the same accuracy indicates potential savings of up to 630 observations for five and up to 1260 observations for ten hand gestures to be recognized. Since labeling video recordings of hand gestures implies significant effort, these savings can be considered substantial.


翻译:我们开发了很少的热学习模型,以识别五、十种不同的动态手势,这些模型通过向每个手势提供一、二或五个示例而任意互换。所有模型都建在关系网(RN)的少热学习结构中,长期短期内存细胞构成骨干。这些模型使用从Jester数据集RGB视频序列中提取的手参照点,该序列经过修改,包含190种不同类型的手势。结果显示,在识别5个和10个动态手势时,精确度高达88.8%;10个动态手势时,精确度高达81.2%。研究还展示了使用少热学习方法而不是传统的深学习方法来探测动态手势的可能节省努力。节减是指在用新的手势而不是用少量Shot学习模型培训时所需的额外观测次数。对于达到大约相同精确度的观测次数的差额,表明,在5个和1260个动态手力手势动作的观测中,可能节省630个观测次数,最高为81.2%。10个重大手力力动作的观测结果得到确认。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
1+阅读 · 2023年2月16日
Arxiv
1+阅读 · 2023年2月15日
Arxiv
11+阅读 · 2022年9月1日
Arxiv
14+阅读 · 2022年5月6日
Arxiv
31+阅读 · 2021年3月29日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员