Modeling and control of high-dimensional, nonlinear robotic systems remains a challenging task. While various model- and learning-based approaches have been proposed to address these challenges, they broadly lack generalizability to different control tasks and rarely preserve the structure of the dynamics. In this work, we propose a new, data-driven approach for extracting low-dimensional models from data using Spectral Submanifold Reduction (SSMR). In contrast to other data-driven methods which fit dynamical models to training trajectories, we identify the dynamics on generic, low-dimensional attractors embedded in the full phase space of the robotic system. This allows us to obtain computationally-tractable models for control which preserve the system's dominant dynamics and better track trajectories radically different from the training data. We demonstrate the superior performance and generalizability of SSMR in dynamic trajectory tracking tasks vis-a-vis the state of the art, including Koopman operator-based approaches.
翻译:建模和控制高维、非线性机器人系统仍然是一项艰巨的任务,虽然提出了各种以模型和学习为基础的方法来应对这些挑战,但普遍缺乏对不同控制任务的普遍可操作性,也很少保留动态结构。在这项工作中,我们提出了一个新的数据驱动方法,用光谱子谱减少数据提取低维模型。与其他数据驱动方法不同,这些方法适合动态模型来培训轨迹,我们查明了嵌入机器人系统整个阶段空间的通用、低维吸引器的动态。这使我们能够获得可计算可选的控制模型,以维护系统的主导动态,并更好地跟踪与培训数据截然不同的轨迹。我们展示了在动态轨迹跟踪任务中,包括Koopman操作器方法在内的动态轨迹跟踪任务的优异性及可通用性。