The method of instrumental variables provides a fundamental and practical tool for causal inference in many empirical studies where unmeasured confounding between the treatments and the outcome is present. Modern data such as the genetical genomics data from these studies are often high-dimensional. The high-dimensional linear instrumental-variables regression has been considered in the literature due to its simplicity albeit a true nonlinear relationship may exist. We propose a more data-driven approach by considering the nonparametric additive models between the instruments and the treatments while keeping a linear model between the treatments and the outcome so that the coefficients therein can directly bear causal interpretation. We provide a two-stage framework for estimation and inference under this more general setup. The group lasso regularization is first employed to select optimal instruments from the high-dimensional additive models, and the outcome variable is then regressed on the fitted values from the additive models to identify and estimate important treatment effects. We provide non-asymptotic analysis of the estimation error of the proposed estimator. A debiasing procedure is further employed to yield valid inference. Extensive numerical experiments show that our method can rival or outperform existing approaches in the literature. We finally analyze the mouse obesity data and discuss new findings from our method.


翻译:工具变量的方法为许多实验性研究中的因果推断提供了基本和实用的工具,这些实验性研究中,处理方法与结果之间有未经测量的混杂现象和结果之间的因果关系。现代数据,如这些研究的遗传基因组数据往往是高维的。高维线性工具变量回归在文献中得到了考虑,因为其简单,尽管可能存在真正的非线性关系。我们建议一种更注重数据的方法,即考虑仪器和处理方法之间的非参数添加模型,同时在处理方法与结果之间保持一个线性模型,以便其中的系数能够直接产生因果关系解释。我们提供了两个阶段的估算和推断框架,在这种更一般性的设置下,我们提供了两个阶段的估算和推断框架。Lasso组的正规化首先用于从高维性添加模型中选择最佳工具,结果变量随后又在添加模型的固定值上进行回归,以便确定和估计重要的治疗效果。我们提出了一种更精确的估算错误。我们进一步采用了一种偏差程序,以得出正确的误差。我们从目前的数据分析方法,我们从现有模型中最终分析了对应的方法。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
讲座报名丨 ICML专场
THU数据派
0+阅读 · 2021年9月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年12月14日
Arxiv
0+阅读 · 2022年12月13日
Arxiv
0+阅读 · 2022年12月11日
VIP会员
相关VIP内容
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
讲座报名丨 ICML专场
THU数据派
0+阅读 · 2021年9月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员