In his monograph Chebyshev and Fourier Spectral Methods, John Boyd claimed that, regarding Fourier spectral methods for solving differential equations, ``[t]he virtues of the Fast Fourier Transform will continue to improve as the relentless march to larger and larger [bandwidths] continues''. This paper attempts to further the virtue of the Fast Fourier Transform (FFT) as not only bandwidth is pushed to its limits, but also the dimension of the problem. Instead of using the traditional FFT however, we make a key substitution: a high-dimensional, sparse Fourier transform (SFT) paired with randomized rank-1 lattice methods. The resulting sparse spectral method rapidly and automatically determines a set of Fourier basis functions whose span is guaranteed to contain an accurate approximation of the solution of a given elliptic PDE. This much smaller, near-optimal Fourier basis is then used to efficiently solve the given PDE in a runtime which only depends on the PDE's data compressibility and ellipticity properties, while breaking the curse of dimensionality and relieving linear dependence on any multiscale structure in the original problem. Theoretical performance of the method is established herein with convergence analysis in the Sobolev norm for a general class of non-constant diffusion equations, as well as pointers to technical extensions of the convergence analysis to more general advection-diffusion-reaction equations. Numerical experiments demonstrate good empirical performance on several multiscale and high-dimensional example problems, further showcasing the promise of the proposed methods in practice.
翻译:约翰·博伊德在他的专著《Chebyshev》和《Freier Spectral方法》中声称,关于Fourier光谱方法解决差异方程式,“Fourier快速变换的美德将继续随着Fourier快速变异法的无情进化而继续得到改善。本文试图进一步推广Fourier快速变换法(FFT)的美德,因为不仅将带宽推向极限,而且将问题的规模也扩大到问题的范围。我们不使用传统的FFFFT,而是做了一个关键的替代:高维、稀疏的Fourier变异变异法(SFT)与随机化的1级拉蒂方法相配。由此产生的稀异光谱法将迅速和自动决定一套四倍基函数,其范围将保证包含给定的椭圆形PDE的解决方案的准确近于其范围,然后用来在运行过程中有效解决给定的PDE,而这只取决于PDE的数据压缩和缩略性特性,同时打破了SForierre变异变异的高度变异法的诅咒,同时打破了Slationalalalalalalalalalalal-ligralationalalalalalalalalliverslation laxalal ex ex ex ex ex ex ex ex laxlational 一种在任何多级分析中,在任何层次化法上,在任何层次化法上展示法的平面分析中,在任何层次平面法的平面法的平面法的平面法的平面分析中,在任何平面法的平面法的平面法的平流分析中, 。