In his monograph Chebyshev and Fourier Spectral Methods, John Boyd claimed that, regarding Fourier spectral methods for solving differential equations, ``[t]he virtues of the Fast Fourier Transform will continue to improve as the relentless march to larger and larger [bandwidths] continues''. This paper attempts to further the virtue of the Fast Fourier Transform (FFT) as not only bandwidth is pushed to its limits, but also the dimension of the problem. Instead of using the traditional FFT however, we make a key substitution: a high-dimensional, sparse Fourier transform (SFT) paired with randomized rank-1 lattice methods. The resulting sparse spectral method rapidly and automatically determines a set of Fourier basis functions whose span is guaranteed to contain an accurate approximation of the solution of a given elliptic PDE. This much smaller, near-optimal Fourier basis is then used to efficiently solve the given PDE in a runtime which only depends on the PDE's data compressibility and ellipticity properties, while breaking the curse of dimensionality and relieving linear dependence on any multiscale structure in the original problem. Theoretical performance of the method is established herein with convergence analysis in the Sobolev norm for a general class of non-constant diffusion equations, as well as pointers to technical extensions of the convergence analysis to more general advection-diffusion-reaction equations. Numerical experiments demonstrate good empirical performance on several multiscale and high-dimensional example problems, further showcasing the promise of the proposed methods in practice.


翻译:约翰·博伊德在他的专著《Chebyshev》和《Freier Spectral方法》中声称,关于Fourier光谱方法解决差异方程式,“Fourier快速变换的美德将继续随着Fourier快速变异法的无情进化而继续得到改善。本文试图进一步推广Fourier快速变换法(FFT)的美德,因为不仅将带宽推向极限,而且将问题的规模也扩大到问题的范围。我们不使用传统的FFFFT,而是做了一个关键的替代:高维、稀疏的Fourier变异变异法(SFT)与随机化的1级拉蒂方法相配。由此产生的稀异光谱法将迅速和自动决定一套四倍基函数,其范围将保证包含给定的椭圆形PDE的解决方案的准确近于其范围,然后用来在运行过程中有效解决给定的PDE,而这只取决于PDE的数据压缩和缩略性特性,同时打破了SForierre变异变异的高度变异法的诅咒,同时打破了Slationalalalalalalalalalalal-ligralationalalalalalalalalliverslation laxalal ex ex ex ex ex ex ex ex laxlational 一种在任何多级分析中,在任何层次化法上,在任何层次化法上展示法的平面分析中,在任何层次平面法的平面法的平面法的平面法的平面分析中,在任何平面法的平面法的平面法的平流分析中, 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
【2022新书】谱图理论,Spectral Graph Theory,100页pdf
专知会员服务
75+阅读 · 2022年4月15日
专知会员服务
51+阅读 · 2020年12月14日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Twitter大佬在线讲座:GNN through the Lens of Curvature
图与推荐
1+阅读 · 2022年4月12日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年3月22日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Twitter大佬在线讲座:GNN through the Lens of Curvature
图与推荐
1+阅读 · 2022年4月12日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员