Objects moving at high speed appear significantly blurred when captured with cameras. The blurry appearance is especially ambiguous when the object has complex shape or texture. In such cases, classical methods, or even humans, are unable to recover the object's appearance and motion. We propose a method that, given a single image with its estimated background, outputs the object's appearance and position in a series of sub-frames as if captured by a high-speed camera (i.e. temporal super-resolution). The proposed generative model embeds an image of the blurred object into a latent space representation, disentangles the background, and renders the sharp appearance. Inspired by the image formation model, we design novel self-supervised loss function terms that boost performance and show good generalization capabilities. The proposed DeFMO method is trained on a complex synthetic dataset, yet it performs well on real-world data from several datasets. DeFMO outperforms the state of the art and generates high-quality temporal super-resolution frames.


翻译:当用相机捕获时,高速移动的物体似乎明显模糊。当物体有复杂的形状或纹理时,模糊的外观特别模糊。在这种情况下,古典方法,甚至人类,无法恢复物体的外观和运动。我们提出一种方法,根据一个带有估计背景的单一图像,在一系列子框中输出物体的外观和位置,仿佛被高速相机(即时间超分辨率)所捕获。拟议的基因模型将模糊物体的图像嵌入一个潜在的空间代表,使背景分解,并造成清晰的外观。在图像形成模型的启发下,我们设计了新的自我监督损失功能术语,以提升性能并展示良好的概括性能力。拟议的DeFMO方法在复杂的合成数据集上受过训练,但在许多数据集中,它却在真实世界数据上表现良好。DeFMO超越了艺术的状态,并产生了高品质的时空超分辨率框架。

0
下载
关闭预览

相关内容

【NeurIPS 2019的主要趋势】Key trends from NeurIPS 2019
专知会员服务
12+阅读 · 2019年12月19日
【ICIP2019教程-NVIDIA】图像到图像转换,附7份PPT下载
专知会员服务
55+阅读 · 2019年11月20日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
Learning Blind Video Temporal Consistency
Arxiv
3+阅读 · 2018年8月1日
Arxiv
7+阅读 · 2018年3月19日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员