Structural entropy solves the problem of measuring the amount of information embedded in graph structure data under a strategy of hierarchical abstracting. In this metric, it is necessary to decode the optimal encoding tree, i.e., the optimal hierarchical abstracting. In dynamic graph scenarios, we usually need to measure the structural entropy of the updated graph at any given time. However, the current structural entropy methods do not support the efficient incremental updating of an encoding tree. To address this issue, we propose a novel incremental measurement method of structural entropy for dynamic graphs. First, we present two new dynamic adjustment strategies for one- and two-dimensional encoding trees. Second, we propose a new metric, namely Global Invariant, to approximate the updated structural entropy in the computational complexity of O(1). Besides, we define another metric, namely Local Difference, as the difference between the updated structural entropy and the Global Invariant, whose computational complexity is O(n). Third, new efficient incremental algorithms, Incre-1dSE and Incre-2dSE, are designed for computing the updated one- and two-dimensional structural entropy. Furthermore, we theoretically prove that the Local Difference and its first-order absolute moment converge to 0 in order of O(log m/m). We conduct sufficient experiments under dynamic graph datasets generated by Hawkes Process, Triad Closure Process, and Partitioning-based Process to evaluate the efficiency of our algorithms and the correctness of the theoretical analysis. Experimental results confirm that our method effectively reduces the time consumption, that up to 3 times speedup for one-dimensional cases and at least 11 times for two-dimensional cases are achieved on average while maintaining relative errors within 2%.
翻译:结构质变 解决了测量图表结构数据中所含信息数量的问题。 在等级抽象战略下, 我们提出两个新的动态调整策略, 用于一维和二维编码树。 第二, 我们提出一个新的指标, 即全球变异, 以近似 O(1) 计算复杂度中的最新结构变异。 此外, 我们定义了另一个指标, 即本地变异, 因为更新的结构变异和计算复杂度为 O(n) 的全球变异之间的差别。 为了解决这个问题, 我们建议了一个新的、 新的动态图形结构变异变异计算方法。 首先, 我们为一和二维编码树提出了两个新的动态调整战略。 第二, 我们提出一个新的指标, 即全球变异性, 以接近 O(1) 计算复杂度中的最新结构变异性。 此外, 我们定义了另一个指标, 即“ 本地变异性”, 新的结构变异性算法是 O(n) 。 第三, 新的高效递增算法, Incre- dSE 和 Inre-2SE, 用于计算一和二维 结构变异性 的更新案例, 在Oralalalalalalalalal 分析中, 解算算算算算算中, 。